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A thin fluid drop is at rest on a plane vertical surface, supported against gravity by 
surface tension. The perimeter of the drop is required to lie on a given closed curve, 
upon which the contact angle is arbitrary. If the drop is of sufficient volume, it can 
wet the whole area interior to this curve. However, for any given curve, there is a 
certain critical volume below which this fully wetted configuration is not physically 
acceptable, the formal solution having negative thickness. It is suggested here as an 
alternative that the upper portion of the drop, above a free boundary to be 
determined, must drain completely. Some time-dependent computations in two 
dimensions are presented to illustrate this draining property. In three dimensions, 
the static free boundary has zero contact angle, and must be determined as part of 
the solution. An example solved here is that where the original boundary is a circle, 
and the free boundary is a non-trivial curve lying inside it, whose shape is found by 
numerical methods. This problem also has relevance to the shape of a raindrop on a 
windowpane where surface contamination prevents contact-line motion, and the 
drop may again be considered to be confined within a prescribed boundary. 

1. Introduction 
Fluid dynamic problems in which capillary forces play a role are notoriously 

difficult (see e.g. Dussan V. 1979; de Gennes 1985; Tuck & Schwartz 1990) if there 
is a moving contact line between the fluid and a solid boundary, since there are 
apparent paradoxes a t  the moving points of contact. On the other hand, fluid static 
problems of this kind have been studied with success for centuries ; see Princen (1969) 
for a useful review and Finn (1988) for a recent analytical study. If the fluid forms 
a drop or layer on a plane or nearly plane surface, this is a classical elliptic boundary- 
value problem, and the solution is well defined and uniquely determined. 

For example, the problem of a thin layer of fluid on a vertical plane wall under 
gravity, the wall being of finite extent and fully wetted within a given closed curve, 
can be reduced to a Dirichlet problem for Laplace's equation, and the solution 
determined by various means. The properties of the solution include the fact that, in 
contrast to the situation for a moving contact line, the angle of contact a t  the fixed 
contact curve is not prescribed in advance, but rather is determined by the solution. 
This is also in contrast to some non-fully wet static problems, such as that for a finite- 
volume drop on an infinite perfectly clean and smooth plane wall, where the extent 
of wetting is determined by the solution, but the contact angle must be prescribed. 

In fact, a smooth wall is somewhat of an idealization, and any irregularity or 
imperfection will have the tendency to bound the wetted domain, so reducing the 
problem back to the one of interest here. For example, a commonly observed 
phenomenon is a raindrop apparently at rest on a dirty windowpane. Even though 
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the glass is vertical, the drop can be in equilibrium against gravity because the 
contact angle, where the edge of the drop meets the glass, can vary around the 
periphery and is, in general, larger on the lower portion of this boundary. Thus the 
net surface-tension force on the droplet is upward, balancing the weight. Because the 
glass is contaminated, the contact angle is not uniquely given ; rather it is merely 
constrained to lie in an interval between the so-called receding and advancing angles. 
The difference between these angles is a measure of contact angle hysteresis 
(Schwartz & Garoff 1985), an effect associated with variable surface energy density 
on a microscopically ‘spotted ’ surface. Similar effects can be shown to occur on clean 
but microscopically rough surfaces. 

When the hysteresis is large, and there are effectively no bounds on contact angle, 
the problem can thus be simplified to one for a drop on a perfectly plane wall, where 
the perimeter curve of the drop is given, whereas the contact angle variation needs 
to be found as part of the solution. For a perimeter of given shape, formal solutions 
to this static problem will always exist in which the wall is wetted everywhere inside 
that perimeter. 

However, these solutions are not always physically acceptable. In particular, when 
the drop is very thin, they do not necessary have everywhere positive thickness. This 
is not acceptable if the wall is plane and impermeable. What is the alternative 1 

We suggest here that when the volume of fluid in the drop is less than a certain 
critical value, a steady-state solution with positive thickness will still be possible, but 
with the liquid occupying only the lower portion of the original domain. On the upper 
portion of the domain, the layer thickness is identically zero. In effect, the upper 
portion has de-wetted. 

On the to-be-determined free boundary separating these two regions, we have an 
additional boundary condition, namely that the normal gradient of the elevation, or 
equivalently the contact angle, is zero. This condition follows from the realization 
that the steady free-boundary problem is the ultimate state following a transient 
motion of the fluid, when the ‘dry’ portion has drained to  vanishing thickness in the 
limit of large time. Examples of such transient computations are presented here for 
the two-dimensional case, using a lubrication approximation (cf. Schwartz 1989 ; 
Moriarty, Schwartz & Tuck 1990) for the dynamics of thin sheets of viscous fluids. 
In two dimensions, the free-boundary problem for the limiting static solution reduces 
to determining a single free parameter, namely the reduced length of the wetted 
segment, and the transient computations confirm that the sheet approaches after a 
long time the static solution that has the same volume as the initial profile, but on 
a reduced length such that the upper contact angle is zero. 

I n  three dimensions with an arbitrary given initial drop perimeter, the static 
problem cannot be solved in closed form when there is de-wetting on a domain that is 
not known in advance. We present here a numerical solution of the resulting free- 
boundary problem, for the case when the original perimeter was circular. The results 
suggest draining of the remaining fluid to the bottom of the circular domain, as the 
volume of the drop is decreased toward zero. The present numerical method is 
capable of generating solutions to the problem only so long as about half of the 
original circular domain remains wetted. However, the drop that de-wets to this 
extent is already quite thin, having only about 7 %  of the volume of a drop that is 
on the verge of first de-wetting a t  its topmost point. 
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FIGURE 1. Sketch of static drop on a plane wall a t  a general angle a. 

2. Fully wetting solutions 
Wc consider hcre only thin drops, with thickness h(x, y)  satisfying h,, h, -4 1. Then 

if the x-axis makes an angle a to gravity, as indicated in figure 1, static equilibrium 
of a drop of shape z = h(x, y) is described by 

-aV2h = p,+pg(xcosa-hsina). (2.1) 

Equation (2.1) simply expresses balance between the forces of surface tension and 
gravity, the quantity on the left being mean curvature times surface-tension 
coefficient CT, and the quantity on the right being hydrostatic pressure, with p ,  an 
arbitrary constant measuring the hydrostatic pressure at  the origin. 

For the most part we consider here vertical walls a = 0, for which (2.1) is a Poisson 
equation 

with a simple linear function of x as the forcing term, and hence if we write 

Po 2 PS h(x,y) = --x - - x 3 + H ( x , y )  
2rr 6n 

the problem has reduced to one for Laplace's equation in H ( x ,  y). 
Consider first the problem of attachment of a drop to  a wall of finite extent in the 

(x,y)-plane, occupying and thus fully wetting the complete interior D of a closed 
curve C. That is, we have to solve (2.1) in D ,  subject to the boundary condition 

h = O  ( 2 , Y ) E C .  (2.4) 

It is assumed that the fluid may make any angle of contact that it chooses with the 
wall a t  this boundary C. Then the boundary-value problem (2.1), (2.4) is expected to 
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have a unique solution for every choice of the arbitrary constant p,, which itself can 
be determined a posteriori in terms of the net fluid volume 

r r  

Thus there is a one-parameter family of drops, the single parameter being most 
suitably taken as the volume v rather than p,. 

However, there is no guarantee that this unique solution is physically acceptable 
for all v ;  in particular, that h 2 0. Indeed, for sufficiently small v, we must always 
expect that h < 0 at the top of D ,  i.e. for the most negative values of x. 

For example, consider the two-dimensional (a/ay = 0) vertical (a  = 0) case, where 
the fluid is assumed to  extend from x = 0 to x = 1 and to have unit depth in the y- 
direction. Then the solution of (2.2) subject to (2.4) is the cubic expression 

13 12a 1 
which remains positive near x = 0 only if 

P914 v > - = v  
72a 

If (2.7) is violated, there is a region 

where h < 0. 
Similarly, consider a fluid drop with a circular perimeter, e.g. one attached to the 

plane vertical end of a circular rod x2 + y2 = a2. Then 

h(x,y) = (a2-x2-y2) -+-x 
(::4 ;: ). 

which remains positive near x = -a only if 

(2.10) 

It is interesting to note that when (2.10) is violated, the boundary between negative 
and positive h is the horizontal line 

(2.11) 

So, for example, the solution (2.9) is also the exact solution for attachment (with h 
everywhere positive) of a liquid drop to a closed curve C consisting of such a 
horizontal line x = - b together with that portion of the circle x2 + y2 = a2 lying below 
it. However, the parameter v in (2.11) is then no longer the actual volume of that 
drop, since v includes a negative contribution from x < - b. 

The problem of a non-vertical wall, with a + 0, can also be solved for some special 
cases. We quote here only the generalization of (2.10) for a circular rim, namely 

(2.12) 

where vo is as given by (2.10), and I,, I1 are modified Bessel functions with argument 

E = a(pg sin "/a)+. (2.13) 
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The quantity on the right of (2.12) tends to 1 as a, E + O ,  so recovering (2.10) as the 
wall becomes vertical, and is less than 1 for all a > 0, confirming that it is easier to 
stay fully wet on sloping walls than vertical walls. Since we are interested mainly in 
the failure of fully wetted solutions, the vertical-wall case is the most sensitive test, 
and we confine our attention to that case from now on. 

3. Transients 
The previous discussion shows that static solutions with everywhere-positive 

thickness h occur above a certain critical volume v = v0. But what happens when 
v < vo ? To answer this question, let us consider unsteady problems, in which an initial 
drop shape not in steady force balance is allowed to evolve toward an equilibrium 
shape. In this section, we shall, however, restrict attention to two-dimensional flow, 
where the thickness of the drop (or sheet) is a function h = h(x,  t )  of one space 
dimension x and time t .  

For this purpose, we can use a computer program that has been described 
elsewhere (Schwartz 1989), which was written for the purpose of solving moving 
contact line problems, but which is equally (in fact better!) suited to solving the 
present class of problems where the contact line is fixed, and the contact angle is 
allowed to be determined by the solution. 

The (lubrication) equation describing transient motion of a two-dimensional thin 
sheet of viscous fluid on a vertical plane wall is 

a 
ax 

3pht = - - (pgh3 + gh3hzz.), 

where ,u is the viscosity (see Levich 1962 ; Tuck & Vanden-Broeck 1984). Notice that 
when there is no time dependence, this equation integrates once to 

p g  + ahzsz = C/h3 (3.2) 

for some constant C proportional to the net volume flux in the x-direction. If there 
is no such flux, then C = 0 and (3.2) integrates again to give 

(3.3) 

which is the same as (2.2) for the case of no y-dependence. 
Hence the time-dependent equation (3.1) certainly possesses a steady-state 

solution (2.6) that is a solution of (2.2). The question we ask now, is whether that 
solution is attained in the limit as t -+ a, when transients have decayed. 

It is interesting to note that the derivation of (3.1) as a lubrication approximation 
to the Navier-Stokes equation is meaningful only if h 2 0.  Our numerical method 
does on occasion allow h to go negative, but this occurs only for relatively coarse 
spatial discretizations, and as the accuracy of the computations increases, there is 
little tendency for numerical solutions of (3.1) to exhibit changes in sign of h. Thus 
with a sufficiently fine grid, starting computations with non-negative h(x, 0) ensures 
non-negative h(x, t )  for all t > 0. This experience suggests that such a result could be 
proved as a formal property of the parabolic partial differential equation (3.1), but 
let us just accept its reasonableness on physical grounds. In that case, there would 
seem to be a difficulty if the volume is sub-critical, so that the unique solution (2.6) 
of (2.2) vanishing at x = 0 and x = I takes some negative values of h in 0 < x < 1. It 
appears that such a solution cannot be attained as a limit of solutions of (3.1). 

p g x  + ah,, = constant, 

11-2 
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We have solved (3.1) numerically for a parabolic initial drop shape, i.e. subject to 
the initial condition 

6v 
h(x,O) = - x ( ~ - x ) ,  

13 
(3.4) 

where v is the (conserved) volume. The actual numerical method is similar to that 
described in Schwartz (1989) and Moriarty et al. (1990). In  the present case of fixed 
contact lines, the boundary conditions for this spatially fourth-order partial 
differential equation are that both h and the volume flux (the quantity inside the 
parentheses in (3.1)) vanish a t  each end. 

The results show that when v > v,, the solution tends rapidly to the equilibrium 
result (2.6). When v < vo, the thickness tends to zero in a range 0 < x < x,, and tends 
to thc solution (2.6) for xo < x < I, but scaled so that x = xo is the new origin, and 
(most important) so that the contact angle a t  x = x, is zero, i.e. h’(x,) = 0 as well as 
h(x,) = 0. This limiting solution is therefore given explicitly as 

where xu satisfies 

or 

6v 
h(x)  = (x-X,)(l-X) 

For example, computations with v/v, = 0.048 

(3.5) 

(3.7) 

are shown in figure 2 at  various .~ 
values of time t .  In  this case. xo/l = 0.532, and the results show h decreasing for 
x < 0.532, at  first quite rapidly, but the final draining is very slow. 

The implication of these transient computations is that, since for the given volume 
v on the given length 1,  there is no possible equilibrium drop with non-negative h, the 
evolving drop does the best it possibly can under the circumstances, and shortens its 
own length 1 to 1-x,, choosing xo so that the equilibrium solution is (just barely!) 
feasible. Because this equilibrium solution is exactly critical (on its ncw length), it 
has the property that the attachment is tangential a t  the new uppcr edge x,. 

We believe that, although the above result is based only on two-dimensional 
computations, its main qualitative conclusion is also valid in three dimensions. That 
is, whenever v < vo on some initial wetted domain, the drop will undergo a transient 
evolution toward a steady equilibrium configuration on a reduced wetted domain, 
with tangential attachment a t  the ‘new’ portion of the wetted perimeter. This result 
seems intuitively sensible, but awaits formal proof, perhaps by variational means. 

In summary, given any closed boundary curve C in a vertical plane, there is a 
critical volume vo proportional to p q l u  and (in three dimensions) to  the fifth power 
of a measure of the linear size of C. For a given volume v of fluid, there will exist a 
solution corresponding to a steady drop attached everywhere to this boundary curve 
C, but with h 2 0 only for v > v,. When v < v,, the drop will assume a shape such that 
it is attached to C only over its lower portion. The upper boundary of the drop will 
be a free surface F lying entirely inside C, such that not only h = 0, but also 

= 0  
ah 
an 
- (3.8) 

on 4’. 
The resulting free-boundary problem is sketched in figure 3. We have made no 
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FIGURE 2. Transient computations of draining of an initially parabolic layer with v/vo = 0.048. 
The curve labelled t = oc is the static solution with de-wetting for 5 < 0.532. 

/ \ 

V'k = given 

C 

FIGUR 3. Sketch of the free-boundary problem for a general initial perimete curve C .  

attempt to establish any formal analytic properties of this problem, and recommend 
it to those with such interests. For example, tangency of the attachment of the free 
boundary F to the original perimeter G, as sketched in figure 3, is purely speculative 
in the general case. However, we have obtained accurate numerical solutions with 
this property for the case when C is a circle, which we now describe. 
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4. Numerical method for a circular boundary 
Our aim in the present section is to solve the static problem for v < vo, in the case 

where the original perimeter curve is a circle on a plane vertical wall, when vo is given 
by (2.10). We use conventional plane polar coordinates ( r ,  8), with gravity acting in 
the x-direction, i.e. in the direction of 8 = 0. We assume symmetry about this vertical 
axis, so that we can confine attention to 0 < 8 < R .  Our task is to solve (2.2) in a 
region confined by the given circle for 0 < 8 < O M ,  and by a free-boundary curve to 
be determined inside that circle for 8, < 19 < R ,  the angle 8, a t  which the free 
boundary joins the circle being also one of the unknowns. 

Let us represent the solution to (2.2) by a polar-coordinate equivalent of (2.3), i.e. 
m 

h(r,  8)  = - hr2 cos2 8 - r3 C O S ~  8 + C ai ri cosj8. 
i-0 

The above applies in a non-dimensional frame of reference such that the circle is 
r = 1,  with a thickness scale 

and with the arbitrary constant A related to p ,  by 

A = -  Po a2 
2h0 (4.3) 

The sum in (4.1) is a solution H(x, y) of Laplace’s equation, and is the real part of a 
power series in x+iy about the centre, with unknown coefficients ai. 

I n  addition, the shape of the free boundary is unknown. Suppose we specify that 
shape by 

for some function R(6)  to  be determined in 8, < 8 < R .  Hence R(8,) = 1, and we 
may as well set R(0)  = 1 for 0 < 8 < O M ,  too. 

r = R(8) (4.4) 

Now the attachment boundary condition (2.4) demands 

m 

O =  - R ( ~ ) ~ c ~ s ~ ~ - A R ( ~ ) ~ c o s ~ ~ +  C aiR(8)icosj8 (4.5) 
i-0 

for all 8-values, i.e. for 0 < 8 < K. On the other hand, the zero-contact-angle free- 
boundary condition (3.8) is satisfied if ah/& = 0 for only those points on the free 
boundary, i.e. if 

m 

i-1 

O =  - 3 ~ ( e ) ~  cos36-2hR(8) cos26+ Cja,R(6)J-l cosj8 

for 8, < 8 < K only. Our task is to choose the unknowns ai, R(0)  so that both (4.5) 
and (4.6) are satisfied. 

In fact there is one more unknown, namely the location 6 = 8, of the attachment 
point. However, it  is convenient to  fix that point as the parameter of the one- 
parameter family of solutions. I n  compensation, we must allow h to  be an unknown, 
and ultimately to allow the solution to determine the volume v of the drop, for each 
input value of 8,. 

The problem is now easily discretized as follows. Suppose for any integer N ,  that  
{Bj ;j = 0, . . . , N> is a set of N +  1 increasing values of 8, satisfying B0 = 0, 8, = K. Let 
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FIGURE 4. Computed relationship between the drop’s volume and the polar angle 8, that 
locates the point of attachment of the free surface to an initially circular drop perimeter. 

the given integer M < N be such that the attachment angle 8, is a member of that 
set. Then if the attachment condition (4.5) is enforced for all N +  1 values of e,, and 
the free-boundary condition (4 .6)  for the N - M +  1 values j = M , M +  1,. . . , N ,  there 
result W - M +  2 equations. 

To balance this number of equations with an equivalent number of unknowns, we 
truncate the series after the term j= N .  This will introduce N + l  unknown 
coefficients ai,j = 0, . . . , N .  At the same time, we have unknown radii H ( 0 , )  a t  the 
N-M points 8 = O M + , , .  . . , O N ,  together with the unknown A. For convenience, let us 
redefine for j > N 

(4.7) 

and a2N-M+1 = (4.8) 

a, = R(8,-N+M), j = N +  1 , .  . . ,2N-M 

Then we have a total of 2N-M+2 unknowns a,, a,, . . . , aZN-,+,. 
The resulting set of 2N-M + 2 nonlinear equations 

e&) = 0 (4 .9)  
in 2 N - M + 2  unknowns (where e, is the error in the boundary value of h for 
i = O , l , k  ..., N and of ah/& for i = N + l , N + 2 ,  ..., 2 N - M + 1 )  can then be solved 
by Newton’s method. In fact it is simple enough for all elements of the Jacobian 
matrix 

(4.10) 
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FIGURE 5. Maximum distanre R(n)  of the free surface above thp centre of the 
original circular perimeter, as a function of'the attachment angle 8,. 

to be evaluated explicitly, which allows the iteration 

to proceed rapidly. 
a -+ a -SZ-'e (4.11) 

5. Results 

circle, there is very rapid convergence, and in the limit as O M + n ,  we find 
When 8, z n, i.e. the free surface is of small extent and is close to the top of the 

a, = a,  = a2 = 0.75, a3 = 0.25, h = 1.5, (5.1) 

with aj = 0 for j > 3, which agrees with the solution (2.9) a t  the critical volume 
v = wo when the drop is just attached to the whole circle. 

As we decrease OM from n, the Newton iteration converges less rapidly, but 
adequately until 1 9 ~  x 90". Figure 4 shows the volume of the drop as a function of 
O M .  Although there is no indication that the family of droplets ceases to exist at any 
O M ,  the present program is not capable of computing it for 0, values much below 90". 

In fact, the results suggest on extrapolation (figure 5 )  that  R(n) = 0 at about 
8, = 78". That is, the top of the free surface passes through thc centre of the original 
circular boundary a t  that value of 8,. The present program, being dependent upon 
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FIGURE 6. Contours of drop thickness for the case OM = in. 

a conventional polar-coordinate representation r = R(8) with origin at that centre, 
must fail whenever R(8) < 0, but this is an artificial limitation. For example, a 
relatively simple extension to the present program would be to  allow R(0)  to take 
prescribed values other than R(8) = 1 on the known boundary, so solving for 
attachment to rims of general shape. Then we could solve for circular rims with 
8, < 78", simply by shifting the origin downward. 

Note, however, that  the drop's volume is decreasing rapidly as 8, decreases, and 
is only about 7 YO of vo a t  8, = 78". There seems little doubt that as 6 ,  + 0, the trend 
evident in figure 5 will continue, with v + 0 smoothly, as the small volume of fluid 
that is left falls to the very bottom of the circle. 

Figure 6 shows contours of h ( z ,  y )  a t  8 ,  = 90'. Raindrops on a windowpane look 
quite like this. 

We thank J. A. Moriarty for checking some of the computations. Acknow- 
ledgement is made of support and hospitality to  E. 0. Tuck by the University of 
Delaware in early 1989, when much of this work was carried out. 
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